metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Chlorotris(2,4,6-trimethylphenyl)tin(IV) and its ethanol hemisolvate

Jordan Geller,^a Ivor Wharf,^a* Francine Bélanger-Gariépy,^b Anne-Marie Lebuis,^a Ian S. Butler^a and Denis F. R. Gilson^a

^aDepartment of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, Canada H3A 2K6, and ^bDépartement de Chimie, Université de Montréal, CP 6128, Succ. A. Montréal, Québec, Canada H3C 3J7 Correspondence e-mail: ivor.wharf@mcgill.ca

Received 10 June 2002 Accepted 10 July 2002 Online 10 August 2002

Chlorotris(2,4,6-trimethylphenyl)tin(IV), crystallizes from ethanol as solvent-free needles, $[Sn(C_9H_{11})_3Cl]$, (I), and as the hemisolvate, $[Sn(C_9H_{11})_3Cl] \cdot 0.5C_2H_6O$, (II). The asymmetric unit in (I) has three independent molecules, whereas in (II), there are two $[Sn(C_9H_{11})_3Cl]$ molecules together with one ethanol molecule. In the unit cell of (II), the ethanol molecules lie in channels between stacks of (Mes)₃SnCl molecules (Mes is 2,4,6-trimethylphenyl) and each ethanol molecule is disordered (0.50:0.50) over two positions. A comparison of the structures of the title compounds and other $(Mes)_3 SnX (X =$ F, Br or I) systems with those of the triphenyltin analogues shows that the steric requirements of the o-CH₃ groups are met by a flattening of the SnC3 skeleton and increases in the average Sn - X and Sn - C values. Comparing Sn - X data for $(Mes)_3SnX$ (X = F, Cl, Br or I) systems with values for the tris(o-methoxyphenyl)tin analogues suggests that the Sn-F distance of 1.961 Å in (Mes)₃SnF may well be characteristic of sterically unhindered four-coordinate Ar₃SnF systems.

Comment

Replacement of the phenyl groups in Ph₃SnX by mesityl (mesityl is 2,4,6-trimethylphenyl, hereinafter Mes) produces structural changes that are attributed to the steric effects of the two *ortho*-methyl groups. Thus, while Ph₃SnX compounds with X = OH (Glidewell *et al.*, 2002), F (Tudela *et al.*, 1992) or OAc (Molloy *et al.*, 1984) are polymeric, with five-coordinate Sn and planar C₃Sn units, the mesityl analogues with X = OH or F (Reuter & Puff, 1989) or OAc (Wharf & Simard, 1992) are monomeric, with pyramidal C₃SnX structures. Even when both (Mes)₃SnX and Ph₃SnX are four-coordinate monomers, *e.g.* with X = I (Simard & Wharf, 1994) or Br (Preut & Huber, 1979; Dakternieks *et al.*, 2000), replacement of the *ortho*-H atoms by CH₃ groups still gives small but significant changes in the geometry around Sn, as well as an increase in the mean Sn-X distance of 0.05 Å when phenyl is replaced by mesityl

in Ar₃SnX (X = Br or I). We now report the structures of (Mes)₃SnCl, (I), and of its ethanol hemisolvate, (II), first for comparison with the structure of Ph₃SnCl (Tse *et al.*, 1986; Ng, 1995), and then to enable the trends in geometry around Sn for the complete (Mes)₃SnX series to be assessed.

Two quite different sets of crystals, (I) and (II), were produced by slow evaporation of an ethanol solution of $(Mes)_3SnCl$. Needles, (I), were found to be solvent-free and to have the same space group as $(Mes)_3SnF$, but with three molecules in the asymmetric unit rather than two, as in the fluoride case. The three molecules differ in detail (Table 1 and Fig. 1), but the averaged environment around Sn is almost the same in each case. The molecules in the solvent-free crystals of (I) are closely packed. However, it would appear that, as X in $(Mes)_3SnX$ increases in size from F to I, solvent-free packing

Figure 1

A view of the molecule of $[Sn(C_9H_{11})_3Cl]$ in the asymmetric unit of the solvent-free compound, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

of $(Mes)_3 Sn X$ units becomes more difficult and has yet to be established with X = Br or I.

In contrast, (II), the solvate $[(Mes)_3SnCl]_2$ ·EtOH (Table 2), has two molecules in the asymmetric unit, with solvent molecules occupying the channels between stacks of $(Mes)_3SnX$ molecules, as in the isomorphous compounds $[(Mes)_3SnBr]_2$ · acetone (Dakternieks *et al.*, 2000) and $[(Mes)_3SnI]_2$ ·CDCl₃ (Simard & Wharf, 1994). However, unlike the trimesityltin iodide solvate, where the CDCl₃ molecules are not disordered, the packing of (II) (Fig. 2) requires the ethanol molecules to partially occupy voids in the crystal lattice; they are completely disordered (0.50:0.50) over two positions. There are, in fact, several models possible for the disorder, and that used here was chosen as the most chemically feasible.

The geometries around Sn in various $(Mes)_3SnX$ molecules can be summarized by the average values of the C-Sn-X and C-Sn-C angles, and by the difference [(C-Sn-C) - (C-Sn-X)] (Table 3), as used earlier when comparing Ph_3SnX and $(o-Anis)_3SnX$ structures (o-Anis is *o*-methoxyphenyl; Wharf *et al.*, 1999).

For the (Mes)₃SnX (X = Cl, Br or I) systems, the SnC₃ pyramid is significantly flatter and the Sn—C distance is longer by ~0.04 Å compared with the Ph₃SnX analogues. Moreover, the Sn environment is essentially the same in all three (Mes)₃SnX (X = Cl, Br or I) molecules, and it would appear that repulsions between the proximal *o*-CH₃ groups and distal *o*-CH₃···X interactions give a limiting geometry around Sn. Only when comparing (Mes)₃SnF with (Mes)₃SnCl is a further flattening of the SnC₃ pyramid seen, but the effect is less than was noted earlier for the comparison of (*o*-Anis)₃SnF with (*o*-Anis)₃SnCl (Wharf *et al.*, 1999).

The effect of increasing repulsion between X and distal o-CH₃ groups, as Cl is replaced by Br and then I, is shown by

Figure 2

A packing diagram for the hemisolvate, (II). For clarity, only one of the two ethanol conformations is shown.

increases in Sn – X of 0.03 Å (X = Cl) and 0.05 Å (X = Br or I) when comparing Ph_3SnX with $(Mes)_3SnX$ (Table 4). The effect of distal o-CH₃ groups on Sn-F is less obvious, since monomeric Ph₃SnF does not exist. However, comparison with Sn-X values for $(o-Anis)_3 SnX$ provides some insight. For $(o-Anis)_3$ SnX (X = Cl or I), Sn-X distances are longer (by 0.015-0.01 Å) than in the corresponding Ph₃SnX molecules, perhaps due to the weak Sn...OCH₃ interaction trans to Sn-X in $(o-Anis)_3 SnX$, but are still shorter than Sn-X in the corresponding $(Mes)_3SnX$ molecules (Table 4). In contrast, Sn-F in $(o-Anis)_3SnF$ is longer by 0.01 Å than in $(Mes)_3SnF$, which would suggest there is no significant repulsion between F and distal o-CH₃ groups in the latter molecule. Thus, the value for Sn-F of 1.96 Å in (Mes)₃SnF may well be characteristic for sterically unhindered four-coordinate Ar₃SnF systems.

Experimental

Slow evaporation of an ethanol solution of previously prepared trimesityltin chloride (Wharf & Simard, 1997) produced crystals which could be readily identified visually as two different products, (I) and (II). A suitable crystal of each type was chosen for X-ray study.

Compound (I)

Crystal data

-	
$[Sn(C_9H_{11})_3Cl]$	$D_x = 1.331 \text{ Mg m}^{-3}$
$M_r = 511.67$	Cu $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 39 847
a = 8.2337 (1) Å	reflections
b = 30.7435(3) Å	$\theta = 2.9-72.9^{\circ}$
c = 30.3142 (2) Å	$\mu = 8.97 \text{ mm}^{-1}$
$\beta = 93.270 \ (1)^{\circ}$	T = 293 (2) K
$V = 7661.02 (13) \text{ Å}^3$	Needle, colourless
Z = 12	$0.64 \times 0.05 \times 0.02 \text{ mm}$

Data collection

Bruker PLATFORM diffractometer	10 064 reflections with $I > 2\sigma(I)$
with SMART 2K CCD area-	$R_{\rm int} = 0.072$
detector	$\theta_{\rm max} = 73^{\circ}$
ω scans	$h = -9 \rightarrow 7$
Absorption correction: multi-scan	$k = -38 \rightarrow 38$
(SADABS; Sheldrick, 1996a)	$l = -37 \rightarrow 37$
$T_{\min} = 0.560, \ T_{\max} = 0.860$	591 standard reflections
92 036 measured reflections	frequency: 2880 min
14 917 independent reflections	intensity decay: 0.1%

Table 1

Selected geometric parameters (Å, °) for (I).

Sn1-C131	2.149 (4)	Sn2-C211	2.170 (4)
Sn1-C111	2.155 (5)	Sn2-Cl2	2.3875 (13)
Sn1-C121	2.169 (4)	Sn3-C311	2.148 (5)
Sn1-Cl1	2.3896 (13)	Sn3-C321	2.149 (5)
Sn2-C231	2.160 (5)	Sn3-C331	2.163 (5)
Sn2-C221	2.163 (4)	Sn3-Cl3	2.3824 (16)
C131-Sn1-C111	116.35 (16)	C231-Sn2-Cl2	107.07 (13)
C131-Sn1-C121	116.80 (17)	C221-Sn2-Cl2	100.91 (12)
C111-Sn1-C121	112.96 (17)	C211-Sn2-Cl2	101.61 (12)
C131-Sn1-Cl1	101.83 (12)	C311-Sn3-C321	116.00 (19)
C111-Sn1-Cl1	104.34 (13)	C311-Sn3-C331	114.30 (19)
C121-Sn1-Cl1	101.70 (12)	C321-Sn3-C331	114.95 (19)
C231-Sn2-C221	116.48 (16)	C311-Sn3-Cl3	102.59 (16)
C231-Sn2-C211	110.56 (17)	C321-Sn3-Cl3	101.99 (15)
C221-Sn2-C211	117.89 (17)	C331-Sn3-Cl3	104.47 (15)
-			

metal-organic compounds

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.101$ S = 1.0514 917 reflections 811 parameters

Compound (II)

Crystal data

 $[Sn(C_9H_{11})_3Cl] \cdot 0.5C_2H_6O$ $M_r = 534.71$ Triclinic, $P\overline{1}$ a = 8.2564 (1) Åb = 16.8363 (1) Å c = 19.5759(1) Å $\alpha = 94.996 (1)^{\circ}$ $\beta = 96.568 (1)^{\circ}$ $\nu = 90.539(1)^{\circ}$ V = 2692.54 (4) Å³

Data collection

719
$R_{\rm in}$
$\theta_{\rm max}$
<i>h</i> =
<i>k</i> =
l =
240
t
i

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2 (F_o^2) + (0.0621P)^2]$
$wR(F^2) = 0.115$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.94	$(\Delta/\sigma)_{\rm max} = 0.002$
10 291 reflections	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$
565 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 2

Selected	geometric	parameters	(A, °) for ((\mathbf{H})).
----------	-----------	------------	-------	---------	----------------	----

Sn1-C131	2.156 (5)	Sn2-C211	2.149 (4)
Sn1-C121	2.168 (4)	Sn2-C221	2.155 (5)
Sn1-C111	2.169 (4)	Sn2-C231	2.160 (5)
Sn1-Cl1	2.3898 (14)	Sn2-Cl2	2.3884 (14)
C131-Sn1-C121	116.54 (17)	C211-Sn2-C221	117.38 (17)
C131-Sn1-C111	115.60 (18)	C211-Sn2-C231	115.39 (18)
C121-Sn1-C111	115.62 (17)	C221-Sn2-C231	114.82 (19)
C131-Sn1-Cl1	102.75 (13)	C211-Sn2-Cl2	99.92 (13)
C121-Sn1-Cl1	99.96 (12)	C221-Sn2-Cl2	102.14 (13)
C111-Sn1-Cl1	102.74 (13)	C231-Sn2-Cl2	103.65 (14)

For both (I) and (II), H atoms were constrained to the parent site and refined using a riding model, with C-H distances in the range 0.93–0.97 Å and an O–H distance of 0.82 Å. For (I), the H atoms of the methyl groups were located in a difference Fourier map and were allowed to refine by their torsion angles. In (II), the ethanol molecule was disordered over two positions (0.50:0.50); these atoms were refined isotropically using restraints (DFIX) to model an ethanol molecule in a crystalline environment (Jonsson, 1976). For (I), a total of 20 peaks of 0.30–0.91 e Å⁻³ were found <1.10 Å from the heavy atoms. The general background was found to be $<0.30 \text{ e} \text{ Å}^{-3}$. A final verification of possible voids in both compounds was performed using the VOID routine of PLATON (Spek, 1995). In (I), a small hole remained in this structure, accounting for one electron and 84.3 Å³ of the volume of the cell.

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0558P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.006$ $\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$

Z = 4 $D_x = 1.319 \text{ Mg m}^{-3}$ Cu Ka radiation Cell parameters from 18 284 reflections $\theta = 2.3 - 72.9^{\circ}$ $\mu = 8.55 \text{ mm}^{-1}$ T = 293 (2) KBlock colourless $0.20 \times 0.18 \times 0.15 \text{ mm}$

198 reflections with $I > 2\sigma(I)$ int = 0.037 $max = 72.9^{\circ}$ $= -10 \rightarrow 10$ $= -17 \rightarrow 20$ $-24 \rightarrow 24$ 40 standard reflections frequency: 2880 min intensity decay: 0.1%

Table 3

Averaged angles (°) around the Sn atom in (Mes)₃SnX systems.

Compound	C-Sn-X	C-Sn-C	(C-Sn-C) - (C-Sn-X)
(Mes) ₃ SnF†	303 (1)	349(1)	46 (2)
(Mes) ₃ SnCl [‡]	309 (1)	345 (1)	36 (2)
(Mes) ₃ SnCl·0.5C ₂ H ₅ OH [‡]	306 (1)	348 (1)	42 (2)
(Mes) ₃ SnBr·0.5(CH ₃) ₂ CO§	306 (1)	348 (1)	42 (2)
(Mes) ₃ SnI·0.5CDCl ₃ ¶	308 (1)	346 (1)	38 (2)
$(Mes)_3SnI \cdot 0.5C_6H_5CH_3$	307 (1)	348 (1)	41 (2)

* Reuter & Puff (1989). * This work. § Dakternieks et al. (2000). ¶ Simard & Wharf (1994).

Table 4

Averaged Sn - X distances (Å) for various $Ar_3Sn X$ complexes.

Ar	X = F	X = Cl	X = Br	X = I
Ph Mes <i>o</i> -Anis	1.96(1)¶ 1.972(5)§§	2.359(8)† 2.388(2)†† 2.371(5)§§	2.495(15)‡ 2.546(3)‡‡	2.70(1)§ 2.751(3)§ 2.713(1)¶¶

† Tse et al. (1986) and Ng (1995). ‡ Preut & Huber (1979). § Simard & Wharf (1994). ¶ Reuter & Puff (1989). †† This work. ‡‡ Dakternieks et ¶ Howie et al. (1994). (2000). §§ Wharf et al. (1999).

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996b); molecular graphics: SHELXTL (Bruker, 1997).

The authors thank NSERC (Canada) and FCAR (Quebec) for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1654). Services for accessing these data are described at the back of the journal.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.
- Dakternieks, D., Lim, A. E. K. & Tiekink, E. R. T. (2000). Main Group Met. Chem. 23, 325-326.
- Glidewell, C., Low, J. N., Bomfin, J. A. S., Filgueiras, C. A. L. & Wardell, J. L. (2002). Acta Cryst. C58, m199-m201.
- Howie, R. A., Ross, J.-N., Wardell, J. L. & Low, J. N. (1994). Acta Cryst. C50, 229-231.
- Jonsson, P.-G. (1976). Acta Cryst. B32, 232-235.
- Molloy, K. C., Purcell, T. G., Quill, K. & Newell, I. W. (1984). J. Organomet. Chem. 267, 237-247.
- Ng, S. W. (1995). Acta Cryst. C51, 2292-2293.
- Preut, H. & Huber, F. (1979). Acta Cryst. B35, 744-746.
- Reuter, H. & Puff, H. (1989). J. Organomet. Chem. 379, 223-234.
- Sheldrick, G. M. (1996a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996b). SHELXL96. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
- Simard, M. G. & Wharf, I. (1994). Acta Cryst. C50, 397-403.
- Spek, A. L. (1995). PLATON. University of Utrecht, The Netherlands.
- Tse, J. S., Lee, F. L. & Gabe, E. J. (1986). Acta Cryst. C42, 1876-1878.
- Tudela, D., Gutierrez-Puebla, E. & Monge, A. (1992). J. Chem. Soc. Dalton Trans. pp. 1069-1071.

Wharf, I., Lebuis, A.-M. & Roper, G. (1999). Inorg. Chim. Acta, 294, 224-231.

Wharf, I. & Simard, M. G. (1992). Appl. Organomet. Chem. 6, 49-57.

Wharf, I. & Simard, M. G. (1997). J. Organomet. Chem. 532, 1-9.