Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Chlorotris(2,4,6-trimethylphenyl)tin(IV) and its ethanol hemisolvate

Jordan Geller, ${ }^{\text {a }}$ Ivor Wharf, ${ }^{\text {a* }}$ Francine BélangerGariépy, ${ }^{\text {b }}$ Anne-Marie Lebuis, ${ }^{\text {a }}$ Ian S. Butler ${ }^{\text {a }}$ and Denis F. R. Gilson ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, Canada H3A 2K6, and ${ }^{\text {b }}$ Département de Chimie, Université de Montréal, CP 6128, Succ. A. Montréal, Québec, Canada H3C 3J7
Correspondence e-mail: ivor.wharf@mcgill.ca

Received 10 June 2002
Accepted 10 July 2002
Online 10 August 2002
Chlorotris(2,4,6-trimethylphenyl)tin(IV), crystallizes from ethanol as solvent-free needles, $\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right]$, (I), and as the hemisolvate, $\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right] \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, (II). The asymmetric unit in (I) has three independent molecules, whereas in (II), there are two $\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right]$ molecules together with one ethanol molecule. In the unit cell of (II), the ethanol molecules lie in channels between stacks of (Mes) $)_{3} \mathrm{SnCl}$ molecules (Mes is 2,4,6-trimethylphenyl) and each ethanol molecule is disordered ($0.50: 0.50$) over two positions. A comparison of the structures of the title compounds and other $(\mathrm{Mes})_{3} \mathrm{Sn} X(X=$ F, Br or I) systems with those of the triphenyltin analogues shows that the steric requirements of the $o-\mathrm{CH}_{3}$ groups are met by a flattening of the SnC_{3} skeleton and increases in the average $\mathrm{Sn}-X$ and $\mathrm{Sn}-\mathrm{C}$ values. Comparing $\mathrm{Sn}-X$ data for (Mes) ${ }_{3} \operatorname{Sn} X$ ($X=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I) systems with values for the tris(o-methoxyphenyl)tin analogues suggests that the $\mathrm{Sn}-\mathrm{F}$ distance of $1.961 \AA$ in (Mes) $)_{3} \mathrm{SnF}$ may well be characteristic of sterically unhindered four-coordinate $\mathrm{Ar}_{3} \mathrm{SnF}$ systems.

Comment

Replacement of the phenyl groups in $\mathrm{Ph}_{3} \mathrm{Sn} X$ by mesityl (mesityl is 2,4,6-trimethylphenyl, hereinafter Mes) produces structural changes that are attributed to the steric effects of the two ortho-methyl groups. Thus, while $\mathrm{Ph}_{3} \mathrm{Sn} X$ compounds with $X=\mathrm{OH}$ (Glidewell et al., 2002), F (Tudela et al., 1992) or OAc (Molloy et al., 1984) are polymeric, with five-coordinate Sn and planar $\mathrm{C}_{3} \mathrm{Sn}$ units, the mesityl analogues with $X=\mathrm{OH}$ or F (Reuter \& Puff, 1989) or OAc (Wharf \& Simard, 1992) are monomeric, with pyramidal $\mathrm{C}_{3} \mathrm{Sn} X$ structures. Even when both (Mes) $)_{3} \mathrm{Sn} X$ and $\mathrm{Ph}_{3} \mathrm{Sn} X$ are four-coordinate monomers, e.g. with $X=\mathrm{I}$ (Simard \& Wharf, 1994) or Br (Preut \& Huber, 1979; Dakternieks et al., 2000), replacement of the ortho-H atoms by CH_{3} groups still gives small but significant changes in the geometry around Sn , as well as an increase in the mean $\mathrm{Sn}-X$ distance of $0.05 \AA$ when phenyl is replaced by mesityl
in $\operatorname{Ar}_{3} \operatorname{Sn} X(X=\operatorname{Br}$ or I$)$. We now report the structures of (Mes) $3_{3} \mathrm{SnCl}$, (I), and of its ethanol hemisolvate, (II), first for comparison with the structure of $\mathrm{Ph}_{3} \mathrm{SnCl}$ (Tse et al., 1986; Ng , 1995), and then to enable the trends in geometry around Sn for the complete (Mes) ${ }_{3} \mathrm{Sn} X$ series to be assessed.

(I)

(II)

Two quite different sets of crystals, (I) and (II), were produced by slow evaporation of an ethanol solution of (Mes) ${ }_{3} \mathrm{SnCl}$. Needles, (I), were found to be solvent-free and to have the same space group as $(\mathrm{Mes})_{3} \mathrm{SnF}$, but with three molecules in the asymmetric unit rather than two, as in the fluoride case. The three molecules differ in detail (Table 1 and Fig. 1), but the averaged environment around Sn is almost the same in each case. The molecules in the solvent-free crystals of (I) are closely packed. However, it would appear that, as X in (Mes) $)_{3} \operatorname{Sn} X$ increases in size from F to I, solvent-free packing

Figure 1
A view of the molecule of $\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right]$ in the asymmetric unit of the solvent-free compound, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
of (Mes) $)_{3} \operatorname{Sn} X$ units becomes more difficult and has yet to be established with $X=\mathrm{Br}$ or I.

In contrast, (II), the solvate $\left[(\mathrm{Mes})_{3} \mathrm{SnCl}\right]_{2} \cdot \mathrm{EtOH}$ (Table 2), has two molecules in the asymmetric unit, with solvent molecules occupying the channels between stacks of $(\mathrm{Mes})_{3} \mathrm{Sn} X$ molecules, as in the isomorphous compounds $\left[(\mathrm{Mes})_{3} \mathrm{SnBr}\right]_{2} \cdot-$ acetone (Dakternieks et al., 2000) and $\left[(\mathrm{Mes})_{3} \mathrm{SnI}_{2} \cdot \mathrm{CDCl}_{3}\right.$ (Simard \& Wharf, 1994). However, unlike the trimesityltin iodide solvate, where the CDCl_{3} molecules are not disordered, the packing of (II) (Fig. 2) requires the ethanol molecules to partially occupy voids in the crystal lattice; they are completely disordered ($0.50: 0.50$) over two positions. There are, in fact, several models possible for the disorder, and that used here was chosen as the most chemically feasible.

The geometries around Sn in various (Mes) ${ }_{3} \mathrm{Sn} X$ molecules can be summarized by the average values of the $\mathrm{C}-\mathrm{Sn}-X$ and $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angles, and by the difference $[(\mathrm{C}-\mathrm{Sn}-\mathrm{C})-$ $(\mathrm{C}-\mathrm{Sn}-X)$] (Table 3), as used earlier when comparing $\mathrm{Ph}_{3} \mathrm{Sn} X$ and (o-Anis) ${ }_{3} \mathrm{Sn} X$ structures (o-Anis is o-methoxyphenyl; Wharf et al., 1999).

For the $(\mathrm{Mes})_{3} \mathrm{Sn} X(X=\mathrm{Cl}, \mathrm{Br}$ or I$)$ systems, the SnC_{3} pyramid is significantly flatter and the $\mathrm{Sn}-\mathrm{C}$ distance is longer by $\sim 0.04 \AA$ compared with the $\mathrm{Ph}_{3} \operatorname{Sn} X$ analogues. Moreover, the Sn environment is essentially the same in all three (Mes) ${ }_{3} \operatorname{Sn} X(X=\mathrm{Cl}, \mathrm{Br}$ or I) molecules, and it would appear that repulsions between the proximal $o-\mathrm{CH}_{3}$ groups and distal $o-\mathrm{CH}_{3} \cdots X$ interactions give a limiting geometry around Sn . Only when comparing (Mes) ${ }_{3} \mathrm{SnF}$ with (Mes) $)_{3} \mathrm{SnCl}$ is a further flattening of the SnC_{3} pyramid seen, but the effect is less than was noted earlier for the comparison of (o-Anis) $)_{3} \mathrm{SnF}$ with (o-Anis) ${ }_{3} \mathrm{SnCl}$ (Wharf et al., 1999).

The effect of increasing repulsion between X and distal $o-\mathrm{CH}_{3}$ groups, as Cl is replaced by Br and then I , is shown by

Figure 2
A packing diagram for the hemisolvate, (II). For clarity, only one of the two ethanol conformations is shown.
increases in $\mathrm{Sn}-X$ of $0.03 \AA(X=\mathrm{Cl})$ and $0.05 \AA(X=\mathrm{Br}$ or I$)$ when comparing $\mathrm{Ph}_{3} \operatorname{Sn} X$ with (Mes) ${ }_{3} \operatorname{Sn} X$ (Table 4). The effect of distal $o-\mathrm{CH}_{3}$ groups on $\mathrm{Sn}-\mathrm{F}$ is less obvious, since monomeric $\mathrm{Ph}_{3} \mathrm{SnF}$ does not exist. However, comparison with $\mathrm{Sn}-$ X values for (o-Anis) ${ }_{3} \operatorname{Sn} X$ provides some insight. For (o-Anis) ${ }_{3} \operatorname{Sn} X(X=\mathrm{Cl}$ or I$), \mathrm{Sn}-X$ distances are longer (by $0.015-0.01 \AA$) than in the corresponding $\mathrm{Ph}_{3} \mathrm{Sn} X$ molecules, perhaps due to the weak $\mathrm{Sn} \cdots \mathrm{OCH}_{3}$ interaction trans to $\mathrm{Sn}-$ X in $(o \text {-Anis) })_{3} \operatorname{Sn} X$, but are still shorter than $\mathrm{Sn}-X$ in the corresponding (Mes) $)_{3} \mathrm{Sn} X$ molecules (Table 4). In contrast, $\mathrm{Sn}-\mathrm{F}$ in $(o \text {-Anis) })_{3} \mathrm{SnF}$ is longer by $0.01 \AA$ than in $(\mathrm{Mes})_{3} \mathrm{SnF}$, which would suggest there is no significant repulsion between F and distal $o-\mathrm{CH}_{3}$ groups in the latter molecule. Thus, the value for $\mathrm{Sn}-\mathrm{F}$ of $1.96 \AA$ in $(\mathrm{Mes})_{3} \mathrm{SnF}$ may well be characteristic for sterically unhindered four-coordinate $\mathrm{Ar}_{3} \mathrm{SnF}$ systems.

Experimental

Slow evaporation of an ethanol solution of previously prepared trimesityltin chloride (Wharf \& Simard, 1997) produced crystals which could be readily identified visually as two different products, (I) and (II). A suitable crystal of each type was chosen for X-ray study.

Compound (I)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right]$
$M_{r}=511.67$
Monoclinic, $P 2_{1} / n$
$a=8.2337(1) \AA$
$b=30.7435(3) \AA$
$c=30.3142(2) \AA$
$\beta=93.270(1)^{\circ}$
$V=761.02(13) \AA^{3}$
$Z=12$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 39847
reflections
$\theta=2.9-72.9^{\circ}$
$\mu=8.97 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colourless
$0.64 \times 0.05 \times 0.02 \mathrm{~mm}$

Data collection

Bruker PLATFORM diffractometer with SMART 2K CCD areadetector
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996a)
$T_{\text {min }}=0.560, T_{\text {max }}=0.860$
92036 measured reflections
14917 independent reflections

> 10064 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.072$
> $\theta_{\max }=73^{\circ}$
> $h=-9 \rightarrow 7$
> $k=-38 \rightarrow 38$
> $l=-37 \rightarrow 37$
> 591 standard reflections \quad frequency: 2880 min intensity decay: 0.1%

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

Sn1-C131	$2.149(4)$	Sn2-C211	$2.170(4)$
Sn1-C111	$2.155(5)$	Sn2-Cl2	$2.3875(13)$
Sn1-C121	$2.169(4)$	Sn3-C311	$2.148(5)$
Sn1-Cl1	$2.3896(13)$	Sn3-C321	$2.149(5)$
Sn2-C231	$2.160(5)$	Sn3-C331	$2.163(5)$
Sn2-C221	$2.163(4)$	Sn3-Cl3	$2.3824(16)$
C131-Sn1-C111	$116.35(16)$	C231-Sn2-Cl2	$107.07(13)$
C131-Sn1-C121	$116.80(17)$	C221-Sn2-Cl2	$100.91(12)$
C111-Sn1-C121	$112.96(17)$	C211-Sn2-Cl2	$101.61(12)$
C131-Sn1-Cl1	$101.83(12)$	C311-Sn3-C321	$116.00(19)$
C111-Sn1-Cl1	$104.34(13)$	C311-Sn3-C331	$114.30(19)$
C121-Sn1-Cl1	$101.70(12)$	C321-Sn3-C331	$114.95(19)$
C231-Sn2-C221	$116.48(16)$	C311-Sn3-Cl3	$102.59(16)$
C231-Sn2-C211	$110.56(17)$	C321-Sn3-Cl3	$101.99(15)$
C221-Sn2-C211	$117.89(17)$	C331-Sn3-Cl3	$104.47(15)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.101$
$S=1.05$
14917 reflections
811 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0558 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\max }=0.91 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{\AA^{-3}}$

Compound (II)

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}\right] \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=534.71$
Triclinic, $P \overline{1}$
$a=8.2564$ (1) \AA
$b=16.8363$ (1) \AA
$c=19.5759$ (1) \AA
$\alpha=94.996(1)^{\circ}$
$\beta=96.568(1)^{\circ}$
$\gamma=90.539(1)^{\circ}$
$V=2692.54(4) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.319 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{CuK} \text { radiation }
\end{aligned}
$$

Cell parameters from 18284
reflections
$\theta=2.3-72.9^{\circ}$
$\mu=8.55 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Bruker PLATFORM diffractometer with SMART 2 K CCD areadetector
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996a)
$T_{\min }=0.160, T_{\max }=0.277$
32709 measured reflections
10291 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.115$
$S=0.94$
10291 reflections
565 parameters

Table 3
Averaged angles $\left({ }^{\circ}\right)$ around the Sn atom in $(\mathrm{Mes})_{3} \mathrm{Sn} X$ systems.

Compound	$\mathrm{C}-\mathrm{Sn}-X$	$\mathrm{C}-\mathrm{Sn}-\mathrm{C}$	$\begin{array}{r} (\mathrm{C}-\mathrm{Sn}-\mathrm{C})- \\ (\mathrm{C}-\mathrm{Sn}-X) \end{array}$
$(\mathrm{Mes})_{3} \mathrm{SnF} \dagger$	303 (1)	349 (1)	46 (2)
$(\mathrm{Mes})_{3} \mathrm{SnCl} \ddagger$	309 (1)	345 (1)	36 (2)
$(\mathrm{Mes})_{3} \mathrm{SnCl} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \ddagger$	306 (1)	348 (1)	42 (2)
$(\mathrm{Mes})_{3} \mathrm{SnBr} \cdot 0.5\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \S$	306 (1)	348 (1)	42 (2)
$(\mathrm{Mes})_{3} \mathrm{SnI} \cdot 0.5 \mathrm{CDCl}_{3}$ -	308 (1)	346 (1)	38 (2)
(Mes) $)_{3} \mathrm{SnI} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ -	307 (1)	348 (1)	41 (2)

Wharf (1994).

Table 4
Averaged $\mathrm{Sn}-X$ distances (\AA) for various $\mathrm{Ar}_{3} \mathrm{Sn} X$ complexes.

Ar	$X=\mathrm{F}$	$X=\mathrm{Cl}$	$X=\mathrm{Br}$	$X=\mathrm{I}$
Ph		$2.359(8) \dagger$	$2.495(15) \ddagger$	$2.70(1) \S$
Mes	$1.96(1)$ ब	$2.388(2) \dagger \dagger$	$2.546(3) \ddagger \ddagger$	$2.751(3) \S$
o-Anis	$1.972(5) \S \S$	$2.371(5) \S \S$		$2.713(1) \uparrow \uparrow$

\dagger Tse et al. (1986) and Ng (1995). \ddagger Preut \& Huber (1979). § Simard \& Wharf (1994). © Reuter \& Puff (1989). † \dagger This work. 抹 Dakternieks et al. (2000). §§ Wharf et al. (1999). ब¢ Howie et al. (1994).

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996b); molecular graphics: SHELXTL (Bruker, 1997).

The authors thank NSERC (Canada) and FCAR (Quebec) for financial support of this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1654). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART (Version 5.059) and SAINT (Version 6.06). Bruker AXS Inc., Madison, Wisconsin, USA.
Dakternieks, D., Lim, A. E. K. \& Tiekink, E. R. T. (2000). Main Group Met. Chem. 23, 325-326.
Glidewell, C., Low, J. N., Bomfin, J. A. S., Filgueiras, C. A. L. \& Wardell, J. L. (2002). Acta Cryst. C58, m199-m201.

Howie, R. A., Ross, J.-N., Wardell, J. L. \& Low, J. N. (1994). Acta Cryst. C50, 229-231.
Jonsson, P.-G. (1976). Acta Cryst. B32, 232-235.
Molloy, K. C., Purcell, T. G., Quill, K. \& Newell, I. W. (1984). J. Organomet. Chem. 267, 237-247.
Ng, S. W. (1995). Acta Cryst. C51, 2292-2293.
Preut, H. \& Huber, F. (1979). Acta Cryst. B35, 744-746.
Reuter, H. \& Puff, H. (1989). J. Organomet. Chem. 379, 223-234.
Sheldrick, G. M. (1996a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996b). SHELXL96. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Simard, M. G. \& Wharf, I. (1994). Acta Cryst. C50, 397-403.
Spek, A. L. (1995). PLATON. University of Utrecht, The Netherlands.
Tse, J. S., Lee, F. L. \& Gabe, E. J. (1986). Acta Cryst. C42, 1876-1878.
Tudela, D., Gutierrez-Puebla, E. \& Monge, A. (1992). J. Chem. Soc. Dalton Trans. pp. 1069-1071.
Wharf, I., Lebuis, A.-M. \& Roper, G. (1999). Inorg. Chim. Acta, 294, 224-231.
Wharf, I. \& Simard, M. G. (1992). Appl. Organomet. Chem. 6, 49-57.
Wharf, I. \& Simard, M. G. (1997). J. Organomet. Chem. 532, 1-9.

